
Parallel neoclassical closures for plasma fluid simulations.

Need forms for parallel closures that include:

1. rigorous treatment of linearized collision operator,

2. interesting magnetic geometry,

3. time dependence, and

allow for an efficient numerical implementation in plasma fluid codes.
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Close fluid equations with kinetically derived

��� and .

Species evolution equations and closure moments for five moment model:
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Changing magnetic topology results in large ��� .
Particles see

0

perturbations of scale length,

��� , which is comparable to the

collision length,

��� .
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Particle trapping significantly reduces �� .

2� for homogeneous and inhomogeneous

� " �

shows effect of trapped particles
as collisionality varies.
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Previous �� derivation lacking.

Simple, “drift" kinetic equation:

� � �= � � �	�� � � � � C �� � � 	�
 � � � � C � # � M
Solve separately for Cordey eigenfunctions:

�
�


�$ 
 A

 � = �

" �
= " � � 
 ��
 � � � � = 
 "
= �

" �
� 
 � � � M

Expand

� �

and solve system of ODEs:

K �� � =��� � � ��
� � � $ =
� �

��� �C
� � M

Write 2 � in integral form:

2� � � �� =�� �
� < �A

�
�

; � J 0 �$ � #%$ 0 � � � # L � � � # M

. – p.5/9



Numerical implementation for �� in NIMROD in place.

Determine spectral content of

0

using periodogram and linearly fit to
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Provide for more complete closure scheme.

Employ CEL approach writing:

C � C � � � � ��� I � # I 0 � � � I � # # � � � /
= A� �

�= � ��

� � �

Derive first-level recursive equation for gyrophase independent

� �

:
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Provide for more complete closure scheme.

Employ CEL approach writing:

C � C � � � � ��� I � # I 0 � � � I � # # � � � /
= A� �
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Can use

0

equation to eliminate

��2and

(1 � 	 ��
 and ignore acceleration as first

cut:
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Consider linearized � �.

Keep full test particle (pitch-angle scattering, speed drag and diffusion) and
field terms.

Use limited expansion for

� � � ���� ��� = � �� � � �A� �= #� � �= �

�= #
to treat linearized

collision operator introducing closures as collisional drives.

Simple test problem to calculate collisional transport coefficients:

moments � 2 3 4 Braginskii

coefficient

	


 �

�& 0.65 0.65 0.67 0.71

� � �
� �= A� � � � �
#

4.60 2.36 2.76 2.76

� � � � �= A� � � � � # 2.73 1.49 1.64 1.6
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In general, invert

�
��

��� � �
�

approximately.

Expand

� � � �
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to form system of hyperbolic equations for�� � � � � I � � I M M M I � � # :
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where
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matrix arises from spatial dependence of

= �

�= � 
 �$ � " � � � # � � �= A � / #

.

Further work needed to:

1. determine roles of passing and trapped distributions.

2. approximately invert algebraic, PDE operator.

3. treat time dependent characteristics which complicate numerical
implementation.
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